LC 2015: PAPER 2

Question 2 (25 marks)

Question 2 (a)

Number in the sample $n=100$
Mean shopping spend $\bar{x}=90 \cdot 45$
Standard deviation $\sigma=20.73$
$\bar{\sigma}=\frac{\sigma}{\sqrt{n}}=\frac{20 \cdot 73}{\sqrt{100}}=2 \cdot 073$

Confidence interval:
$\bar{x}-1.96 \bar{\sigma} \leftrightarrow \bar{x}-1.96 \bar{\sigma}$

Formulae and Tables Book
Statistics and Probability: Sampling
(standard error of the mean) [page 34]

$$
\bar{\sigma}=\frac{\sigma}{\sqrt{n}}
$$

$n=$ Number in the sample
$\sigma=$ standard deviation of the sample
Confidence interval: $\bar{x}-1.96 \bar{\sigma} \leftrightarrow \bar{x}-1.96 \bar{\sigma}$
$90 \cdot 45-1 \cdot 96(2 \cdot 073) \leftrightarrow 90 \cdot 45+1 \cdot 96(2 \cdot 073)$
€ $86 \cdot 39 \leftrightarrow € 94 \cdot 51$
You can be 95% confident that the mean amount spent was in the range € $86 \cdot 39<\mu<€ 94 \cdot 51$.
Marking Scheme Notes
Question 2 (a) [Scale 10C (0, 4, 8, 10)]
4: - Relevant formula with or without substitution

- $\frac{1}{\sqrt{n}}$ with further work

8: $\cdot 1.96 \times \frac{\sigma}{\sqrt{n}}$ evaluated
Question 2 (b)
H_{0} : Mean $\mu=€ 94 \leftarrow$ Null hypothesis: Mean spend is €94
H_{1} : Mean $\mu \neq € 94 \leftarrow$ Alternative hypothesis: Mean spend is not €94
Since the mean μ is in the confidence interval, you cannot reject the null hypothesis.

Marking Scheme Notes

Question 2 (b) [Scale 10D (0, 2, 5, 8, 10)]
2: - One relevant step e.g. null hypothesis or alternative hypothesis stated

- Some work towards finding z
- Mention of $\pm 1 \cdot 96$

5: $\cdot z$ calculated

- Either null or alternative hypothesis stated and relevant work towards finding z
- Confidence interval from (a) and either null or alternative hypothesis stated
- Confidence interval based on 100 (i.e. $89 \cdot 94,98 \cdot 06$) and either null or alternative hypothesis stated

8: $\quad z$ calculated and compared to $\pm 1 \cdot 96$ but: o Not stating null hypothesis and/or alternative hypothesis correctly o Not accepting or rejecting hypothesis o Incorrect conclusion for hypothesis

- Incorrect use of 94 and confidence interval
- Incorrect use of 90.45 and confidence interval

Question 2 (c)

Mean shopping spend $\bar{x}=90.45$
Standard error of the mean $\bar{\sigma}=2 \cdot 073$
Mean amount spend $\mu=94$
$\bar{z}=\frac{\bar{x}-\mu}{\bar{\sigma}}=\frac{90 \cdot 45-94}{2.073}=-1.712$

$$
\begin{gathered}
\text { Formulae and Tables Book } \\
\text { Statistics and Probability: Probability } \\
\text { distribution (standarding formula) [page 34] } \\
\qquad \bar{z}=\frac{\bar{x}-\mu}{\bar{\sigma}} \\
n=\text { Number in the sample } \\
\sigma=\text { standard deviation of the sample }
\end{gathered}
$$

$$
\begin{aligned}
p-\text { value } & =1-P(\bar{z}<1.712)+P(\bar{z}<-1.712) \\
& =1-P(\bar{z}<1.712)+1-P(\bar{z}<1.712) \\
& =2(1-P(\bar{z}<1.712)) \\
& =2(1-0.9564) \\
& =0.0872>0.05
\end{aligned}
$$

p-value $=0.0872$
Explanation: Because $p=8.72 \%$ is greater than 5% there is not a significant difference between the sample mean and the population mean. Any difference may be due to chance.

Marking Scheme Notes

Question 2 (c) [Scale 5C (0, 2, 4, 5)]
2: • Effort at finding $P(z<-1.71)$
4: • p value correct

- Not contextualising answer correctly

